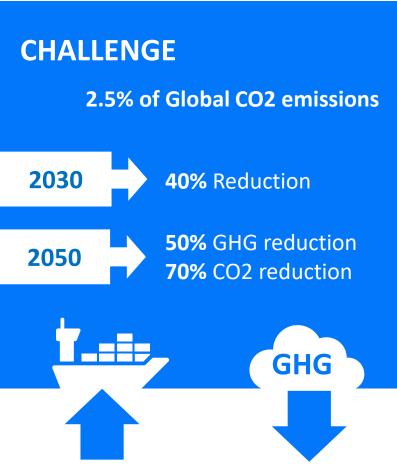


Bi@energy EUROPE

Sustainable biofuels for

shipping


Felipe Ferrari

INTERNATIONAL SHIPPING GOALS

Initiate consideration of mid-term measures under Phase I of the Workplan (October-November 2021)

Further consideration of assessment of impacts on States of candidate GHG measures (October-

November 2021)

EEDI phase 3 in effect for certain ship types with up to 50% carbon intensity reduction for new build large containerships **EEXI survey requirements take effect** (November 2022)

Carbon intensity measures enter into effect

Revision of the IMO Initial GHG Strategy

Start of carbon intensity data (CII) collection under the short-term measure IMO Initial GHG
Strategy objective of
40% reduction of CO₂
emissions per transport
work compared to 2008,
as an average across
international shipping

2030

IMO Initial GHG Strategy objectives of 50% reduction of the total annual GHG emissions and 70% reduction of CO₂ emissions per transport work compared to 2008 whilst pursuing efforts towards phasing them out - as a point on a pathway of CO₂ emissions reduction consistent with the Paris Agreement temperature goals

2022 2023 2024 2025

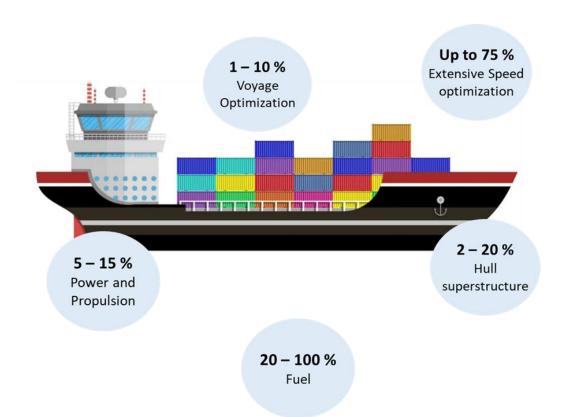
IMO-UNEP Maritime Zero-Low Carbon Innovation Forum (September 2021) **Revision**

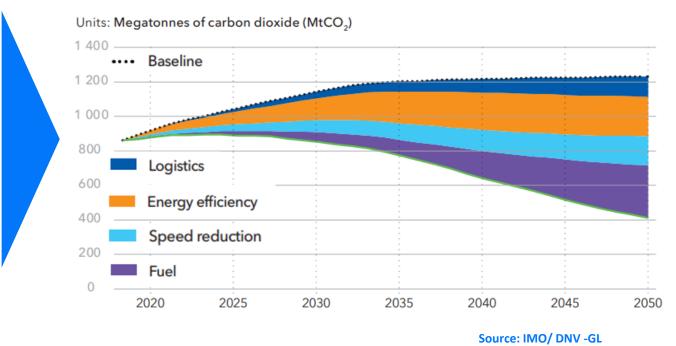
ETS shipping – Internationalization

EEDI phase 3 in effect

- up to 30% reduction

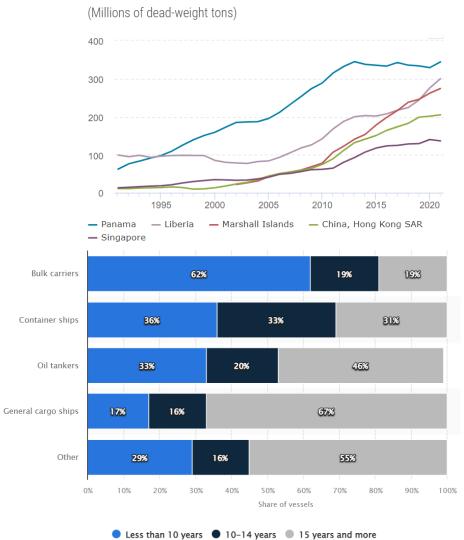
in carbon intensity for


newbuild ship

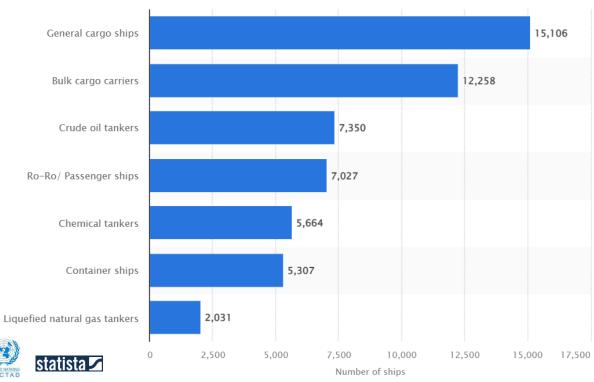

RED III

2050

GHG MITIGATION STRATEGIES


2050 Fransport work increase 40-100%
2020 Business as usual 90-130% vs. 2008

THE OPPORTUNITY: **DECARBONIZING DEEP SEA SHIPPING**


Vessels capacity in top 5 registries

Biofuels are the only option that have the potential to reduce up to 90% CO₂ WTW, today at scale

Existing marine engines → 100.000 HP

Fuel friendly engines

OUR APPROACH

IMMEDIATE SOLUTION FOR SECTORS IN WHICH OPTIONS TO DECARBONIZE ARE LIMITED

Five key questions:

1. Is it sustainable?

- 2. Does it work?
- 3. Is it affordable?
- 4. Is it available?
- 5. Is it scalable?

TECHNOLOGY INTRODUCTION

MARKET DEVELOPMENT

SUSTAINABILITY

Sustainability principles

Waste and residue based only No **competition** with food No direct or indirect land use change No **deforestation** or **biodiversity** loss No **higher quality application** possible **Minimum of 75%** co₂-reduction No negative **social** or **legal** impacts

ANNE MARIT POST-MELBYE Head of industry policy Miljøstiftelsen ZERO

MARTIN JUNG NGER

Profe: sor of bio-basec economy Utrecht I niversity

PATRICIA OSSEWEIJER Professor of sustainability TU Delft

Certification & partners

OUR PROGRESS

2015

GoodFuels founded. focusing on Marine, Road & Rail

2017

GoodShipping enters the market

OCTOBER 2017

Tony's Chocolony's first GoodShipping customer

DECEMBER 2017

Partnership DHL Global Forwarding

NOVEMBER 2018

World's first **Bio** Fuel Oil

bunkering

2020

Extending experience with Bio Fuel Oil applications

NEAR, MEDIUM AND LONG-TERM SOLUTIONS

We work on bringing the best solutions to current business

Advanced biofuels

Sustainable biomass

alternative fuel carriers

2017

SEPTEMBER 2015

First marine biofuel bunkering with Boskalis and Wärtsilä

JUNE 2017

First inland waterway pilot with HEINEKEN

OCT/NOV 2017

Winner TEDx and Accenture Innovation **Award**

SEPTEMBER 2018

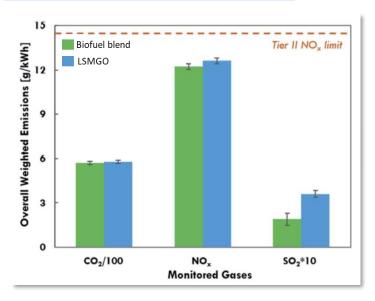
First blockchain bunkering with Samskip

MARCH 2019

container vessel on Bio Fuel Oil

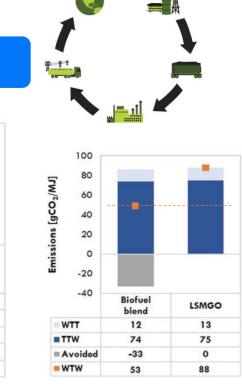
World's first

FEBRUARY 2022


GoodFuels **Expansion Asia-**Pacific Singapore

BIOFUEL REAL DROP-IN: THE LIFECYCLE BENEFIT

Pipe emissions


10,000 0 0 280 t 3200 t 8,000 6,000 0 4,000 2,000 -2,000 -4,000 Scenario 1 Scenario 2 Scenario 3

1,019

7,071

-264

7,826

Sustainable Energy & Fuels

PAPER

1,009

7,095

0

8,104

Towards decarbonization of shipping: direct emissions & life cycle impacts from a biofuel trial aboard an ocean-going dry bulk vessel†

WTT

■ TTW

■ WTW

■ Avoided

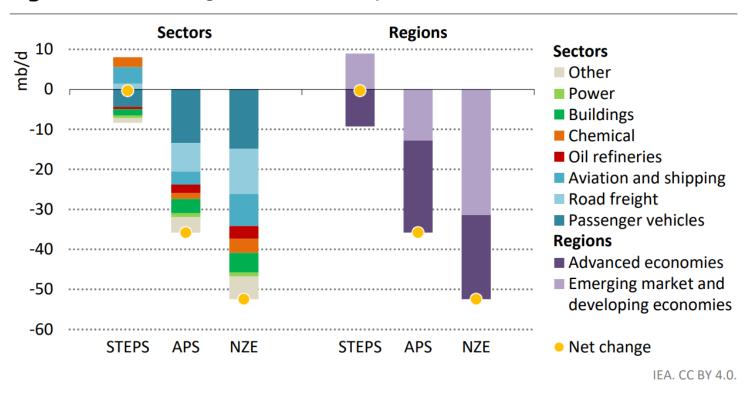
Patritsia Maria Stathatou, 10 **a Scott Bergeron, *b Christopher Fee, *b Paul Jeffrey, *b Michael Triantafyllou* and Neil Gershenfeld**

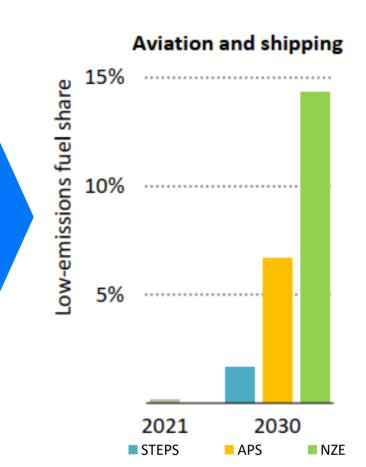
GoodFuels' MDF - 100 (50%) / MGO (50%)

1,104

6,831

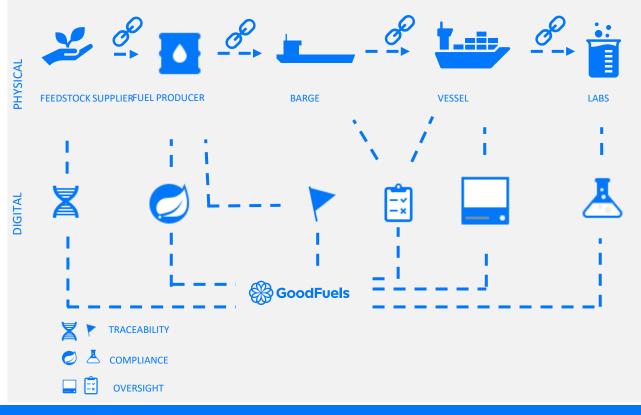
-3,006


4,929



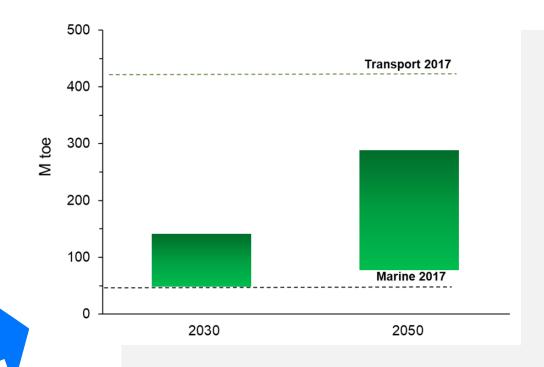
The Sustainability of Biofuels

Figure 7.4 ▷ Change in oil demand by scenario, 2030-2050



NEXT LEVEL ASSURANCE OF SUSTAINABILITY AND SOURCING

Digital technology and physical tracing will help to provide clients with the right sustainability and quality guarantees



FEEDSTOCK DIVERSIFICATION

Biofuel	Feedstock	2030 estimated advanced biofuel quantity (Mtoe)	2050 estimated advanced biofuel quantity (Mtoe)
Hydrotreated vegetable oil/ renewable diesel	Waste oils and fats	1.9	1.9
	Used cooking oil	2.6	6.5
Biomethane	Sewage sludge	0.1-0.2	1.0-1.2
	Manure (solid and liquid)	1.1-1.3	0.4-0.4
	Agricultural residues (high moisture, sugar beet leaves, etc.)	0.1	0.1
Ethanol and hydrocarbons from enzymatic hydrolysis and fermentation	Agricultural residues (straw-like)	21.0-25.3	N/A
	Lignocellulosic crops (grassy)	5.5-16.6	6.5-19.6
	Biowaste	9.2-16.8	13.2-24.4
Fischer Tropsch from gasification + catalytic synthesis	Solid industrial waste (secondary agricultural and forest industries)	27.9–40.1	56.8-84.0
	Agricultural residues (straw-like)	N/A	54.4-62.4
	Agricultural (woody) and forestry residues	1-1.5	2.4-3.2
	Lignocellulosic crops (woody)	7.6–22.7	16.8–50.8
Totals		78.0–129.1	160.0–254.5
Total liquid advanced biofuels taking into account the total sustainable biomass for bioenergy		76.7–127.5	158.5–762.8
Average conversion yield on an energy basis		37%	70%
Average conversion yield on a dry mass basis		15%	29%

Source: Imperial College London
Consultants

SCALING BIOFUEL

Scaling biofuel first requires increasing the supply of suitable blending components

- Calorific value
- Deposit formation (injector and cylinder)
- Compatible with sealings
- Compatible with Purification unit
- Acceptable combustion quality;
- Emissions (NOx and SOx)
 - Not exceed regulatory NOx and SOx limits
- Exhaust After Treatment systems

ISO 8217 Residual fuel specification

- ✓ Stability
- ✓ Corrosion
- ✓ Flash point
- ✓ Cold Flow prop.

SCALING UP

GoodFuels will continue to scale as fast as possible to supply the world's ships with the most sustainable fuels available...

... collaborating with different suppliers using **different feedstocks and technologies** without compromising **quality or sustainability**

- ✓ Sourcing residual products
- ✓ Offtake of future plants
- ✓ Participation in future plants
- ✓ Co-creation and commercialization

CONCLUDING REMARKS

COLLABORATION: INTEGRATE STAKEHOLDERS TECHNOLOGY DEVELOPMENT

SUSTAINABILITY

PUBLIC AFFAIRS

BUSINESS CASE POTENTIAL AND PARTICULARITIES

TECHNICAL SUPPORT
DURING BIOFUEL TRIALS

INTERNATIONAL SUPPLY AND VALUE CHAINS

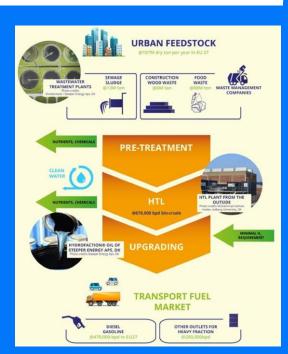
CONTACT

LONG TERM INNOVATION

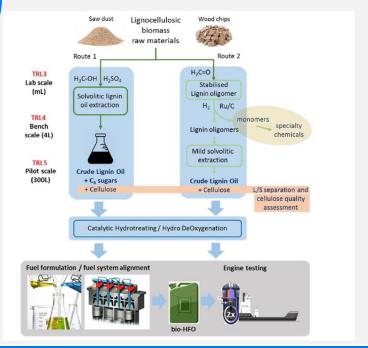
Felipe Ferrari

+31 (0) 6 27188766

felipe@goodfuels.com

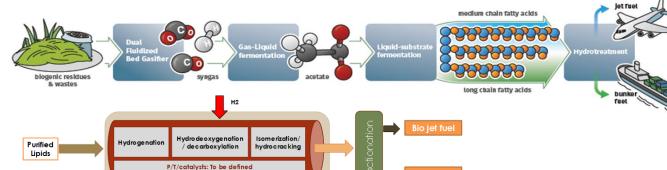


Some examples of our current


innovation projects:



Intermediate bioenergy carrier uptake



OUR STRENGTHS: INNOVATION

Some examples of our current innovation projects:

- Techno-economic analysis
- Incentives and legal framework
- Operation and logistics
- Market assessment
- Product development and fuel specification
- Digital tracing blockchain

MULTI-MODAL GREEN PORTS

Theses projects have received funding from the European Union's Horizon 2020 research and innovation programme under bellow grant agreements No 818413, No 883753, No857806

TAGs Hydrotreating reactor

Hybrid Tandem Catalytic Conversion Process Towards Higher-oxygenate E-fuels (E-TANDEM)

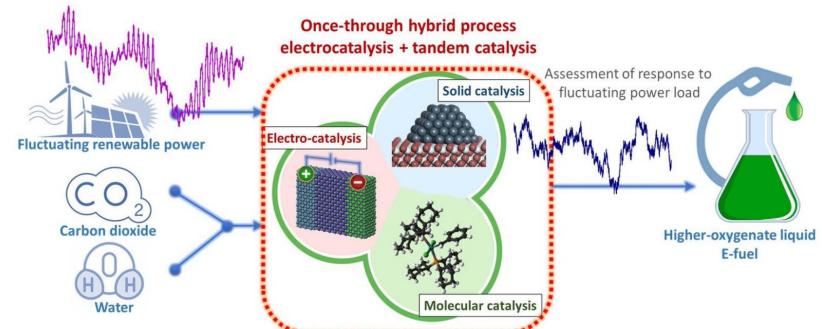
Wind Power

\$ EU matrix 2050

Carbon Source

Biogas

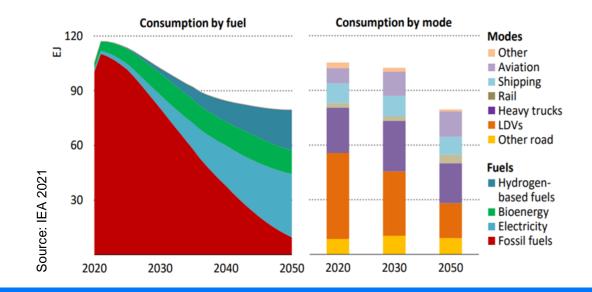
Cement off-gases

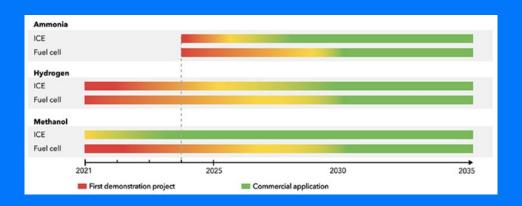


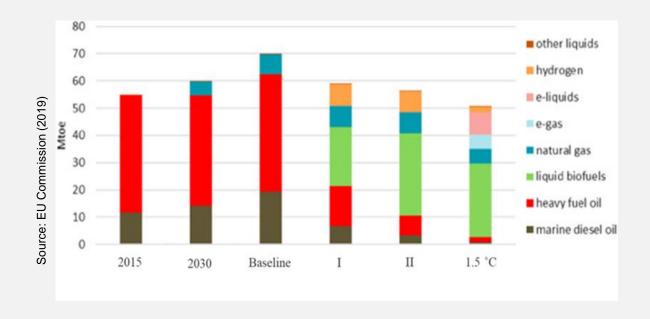
Unlock an efficient and direct production of a new higher-oxygenate diesel-like efuel for the marine and heavy-duty transport sectors

e-syngas production from **co**₂ and **H**₂**O** and single step reaction for molecule elongation (reductive polymerization) and **oxygen reaction** (oxo-functionalization)

Single step reaction (Tandem process) designed to improve energy efficiency and conversion vields






FUTURE PERSPECTIVES

ONBOARD USE TECHNOLOGY

ELECTRIFICATION EXPECTED TO CONTRIBUTE TO A BIG SHARE ON ROAD TRANSPORT ABETTING BIOLIQUID AVAILABILITY TO MARINE.

