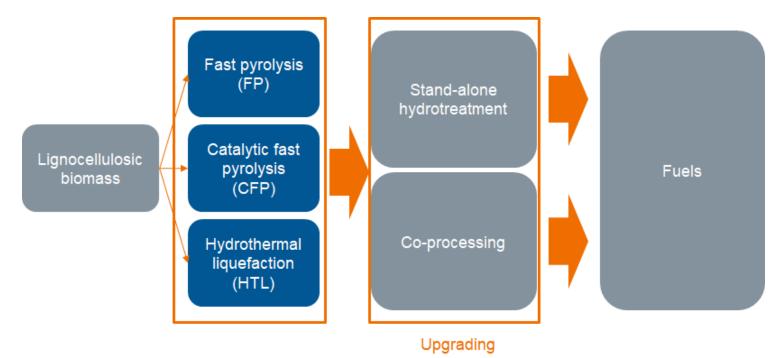
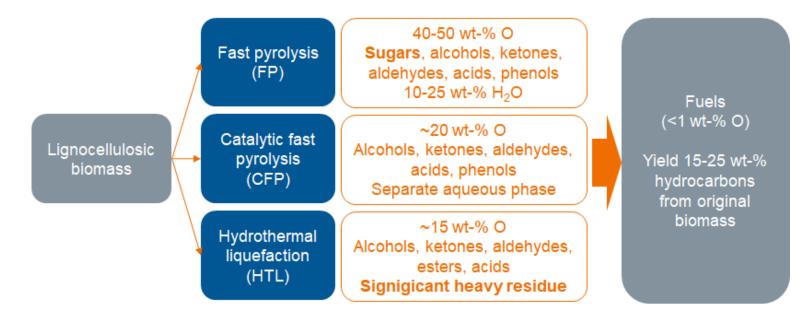


Outline

Introduction to biomass liquefaction and upgrading by hydrotreatment

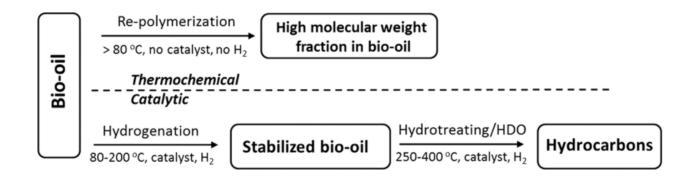

Upgrading by catalytic slurry hydrotreatment

Summary


24/11/2022 VTT – beyond the obvious

Biofuels from lignocellulosic biomass by liquefaction

Biofuels from lignocellulosic biomass by liquefaction

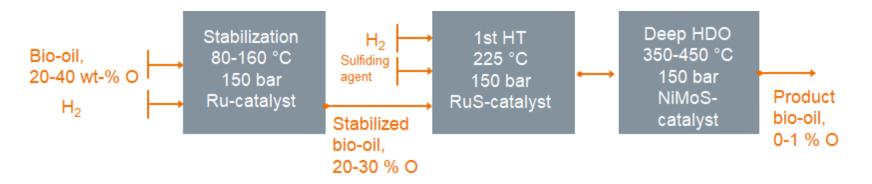


Bio-oils liquefaction by fast pyrolysis and upgrading by HDO

Mild hydrotreatment Hydrocarbon (25%) Thermochemical conversion Bio-oil (35%) Aqueous Bio-oil Fast pyrolysis phase (100%)(75%) Aqueous Oasmaa, A. et al. (2010) phase 'Characterization of Hydrotreated Fast Pyrolysis Liquids', Energy & Fuels. American Chemical Society, 24(9), pp. 5264-5272. doi: 10.1021/ef100573q.

Severe hydrotreatment

Instability of bio-oils



- Bio-oils tends to thermally repolymerize and form plugs in process units
- First signs of thermal condensation at <100 °C, severe at high temperature
- High carbohydrate and carbonyl content

Wang, H. *et al.* (2016) 'Bio-oil Stabilization by Hydrogenation over Reduced Metal Catalysts at Low Temperatures', *ACS Sustainable Chemistry & Engineering.* American Chemical Society, 4(10), pp. 5533–5545. doi: 10.1021/acssuschemeng.6b01270.

Stepwise processing

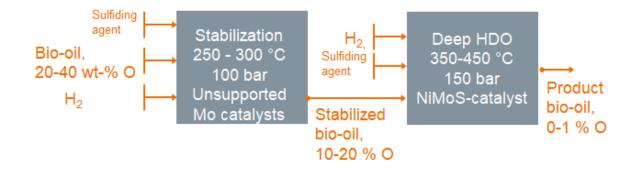
- The plug formation can be hindered by hydroprocessing the bio-oil in multiple steps in fixed bed hydrotreater reactors
- Problems: expensive catalysts, deactivation during 1st stabilising hydrogenation step due to sulphur and coke formation

Zacher, A. H. *et al.* (2019) 'Technology advancements in hydroprocessing of bio-oils', *Biomass and Bioenergy.* Pergamon, 125, pp. 151–168. doi: 10.1016/J.BIOMBIOE.2019.04.015.

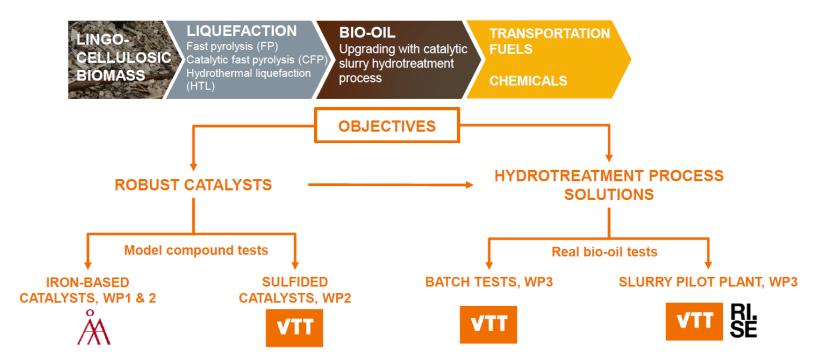
VTT activities in bio-oils upgrading by HDO

- BL2F Black liquor to fuel
 - Integrated HTL and upgrading of black liquor to fuels
 - Performing the HDO in near-critical or supercritical water
- BioFlex
 - Low cost methods to produce marine fuels by fast pyrolysis and upgrading by fixed bed HDO
- CaSH (Catalytic Slurry Hydrotreatment)
 - Catalyst development, regeneration and recovery for slurry-phase hydrotreatment of bio-oil

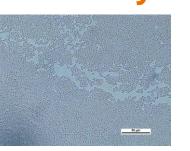
This project has received funding from the European Union Grant Number 884111.


BUSINESS FINLAND

Catalytic slurry hydrotreatment

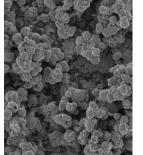

Alternative: slurry hydrotreatment applied for the stabilisation

- Bio-oil stabilization by slurry hydrotreatment applying sulfided Mo-based catalysts
 - Continuous addition of fresh and removal of spent catalyst enabled
- Rest oxygen removal by fixed bed hydrotreatment by supported sulfided catalysts
 - Severity defined by product specification

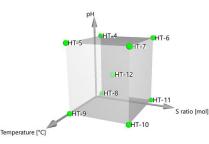

CaSH - Catalytic slurry hydrotreatment

Preparation of unsupported Mo and promoted Mo catalysts

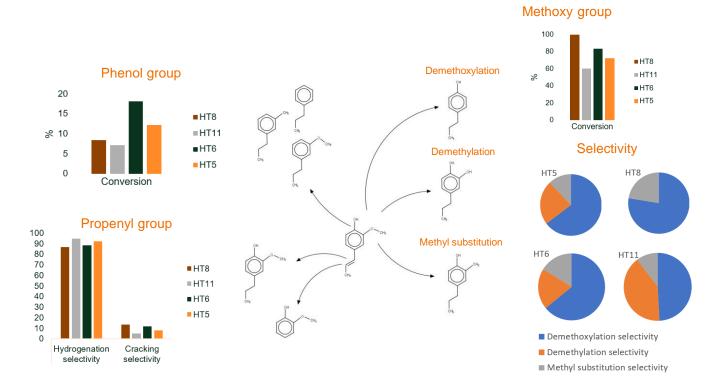
Emulsion- templated synthesis



HDO activity correlation with:


- Emulsion properties
- Precursor properties
- Emulsion sulfidation

One-pot hydrothermal precipitation


Design Region - Untitled Full Fac (2 levels)

Catalyst properties and HDO activity correlation with:

- Synthesis pH
- Synthesis temperature
- Sulfur amount in synthesis

Model component studies - catalyst preparation affecting HDO activity

Tests with real bio-oils

BATCH TEST RUNS

- Batch reactor operation validated with model compounds
- Transition to real bio-oil starting in early 2022

ACTIVITIES

- Identifying and procuring suitable biooils
- Discharged catalyst characterization
- Production of larger catalyst batch for slurry pilot test run

SLURRY PILOT PLANT

- Test run performed with the best catalyst from WP1 and WP2 catalyst development.
- Objective few test runs, in the range of total 50 hours of operation.

Semi-batch testing of fast pyrolysis bio-oil HDO

- Semi-batch reactor setup with continuous gas phase and batch liquid phase
 - Prevention of hydrogen depletion in experiments with feeds of high hydrogen uptake
 - Enables continuous monitoring of gas phase

Feed bio-oil			80%	15%	Water	26%		
					Degree of			
				Oil oxygen	deoxygenation,	,	Carbon	
			Oil carbon	content	oil phase,	Oil yield,	recovery to	
	Temperature	Pressure	content,	(difference),	mass-based	mass-	oil, mass-	Mass
Catalyst	(°C)	(bar)	wt-% (dry)	wt-% (dry)	(dry)	based (dry)	based	balance (all)
VTT Unsupported								
CoMoS	300	30	80%	12%	17%	82%	82%	88%
Commercial								
supported CoMoS	300	30	77%	13%	9%	75%	72%	85%
VTT Unsupported								
CoMoS	350	30	81%	10%	31%	89%	90%	90%
VTT Unsupported								
CoMoS	350	30	80%	12%	21%	94%	94%	92%
VTT Unsupported								
CoMoS	350	60	82%	10%	32%	96%	98%	95%

Feed bio-oil			80%	15%	Water	26%				
					Degree of					
				Oil oxygen	deoxygenation,	,	Carbon			
			Oil carbon	content	oil phase,	Oil yield,	recovery to			
	Temperature	Pressure	content,	(difference),	mass-based	mass-	oil, mass-	Mass		
Catalyst	(°C)	(bar)	wt-% (dry)	wt-% (dry)	(dry)	based (dry) based	balance (all)	
VTT Unsupported										
CoMoS	300	30	80%	12%	17%	E Sai	npling cha	anged		
Commercial							after first three			
supported CoMoS	300	30	77%	13%	9%					
VTT Unsupported						run	s to impro	ve		
CoMoS	350	30	81%	10%	31%	t ma	ss balance	e		
VTT Unsupported						cal	culations			
CoMoS	350	30	80%	12%	21%	<u>c</u>				
VTT Unsupported										
CoMoS	350	60	82%	10%	32%	96%	98%	95%		

Feed bio-oil			80%	15%	Water	26	5%			
					Degree of					
				Oil oxygen	deoxygenation,	,		Carbon		
			Oil carbon	content	oil phase,	Oil y	ield,	recovery to		
	Temperature	Pressure	content,	(difference),	mass-based	ma	ISS-	oil, mass-	Mas	s
Catalyst	(°C)	(bar)	wt-% (dry)	wt-% (dry)	(dry)	based	l (dry)	based	balance	(all)
VTT Unsupported						-	Tho	s clear ef	foot	
CoMoS	300	30	80%	12%	17%					, >
Commercial						(on D	OD and o	DII	
supported CoMoS	300	30	77%	13%	9%		oxva	en conte	nt	, >
VTT Unsupported							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
CoMoS	350	30	81%	10%	31%					, >
VTT Unsupported								ghtly less		
CoMoS	350	30	80%	12%	21%	i	impo	ortant in		>
VTT Unsupported						9	studi	ed range		
CoMoS	350	60	82%	10%	32%					, S

Feed bio-oil			80%	15%	Water	26%		
					Degree of			
				Oil oxygen	deoxygenation,		Carbon	
			Oil carbon	content	oil phase,	Oil yield,	recovery to	
	Temperature	Pressure	content,	(difference),	mass-based	mass-	oil, mass-	Mass
Catalyst	(°C)	(bar)	wt-% (dry)	wt-% (dry)	(dry)	based (dry)	based	balance (all)
VTT Unsupported								
CoMoS	300	30	80%	12%	17%	82%	82%	88%
Commercial								
supported CoMoS	300	30	77%	13%	9%	75%	72%	85%
VTT Unsupported								
CoMoS	350	30	81%	10%	31%	89%	90%	90%
VTT Unsupported								
CoMoS	350	30	80%	12%	21%	94%	94%	92%
VTT Unsupported								
CoMoS	350	60	82%	10%	32%	96%	98%	95%

Even though mass-balance deviation makes comparison challenging, better performance assigned to unsupported catalysts

Summary

- Upgrading of bio-oils to transportation fuels challenging due to instability of bio-oils and impurities in bio-oils (sulfur etc.)
- New solutions seeked to commercialize bio-oils upgrading by HDO
 - Slurry hydroprocessing is a potential alternative enabling continuous addition and removal of the catalyst
 - Promising results achieved with unsupported MoS catalysts developed at VTT
- Next step: slurry hydroprocessing piloting using the developed catalysts

Thank you!

Acknowledgements:

- Business Finland for funding under the project Catalytic Slurry Hydrotreatment
- CaSH industrial consortium
- Co-workers at VTT:

Tyko Viertiö Niko Vuorio Johanna Kihlman Alexander Reznichenko Sari Rautiainen

beyond the obvious

First Name Surname firstname.surname@vtt.fi +358 1234 5678 @VTTFinland @your_account www.vtt.fi