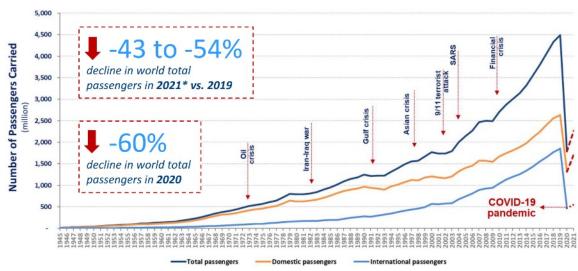
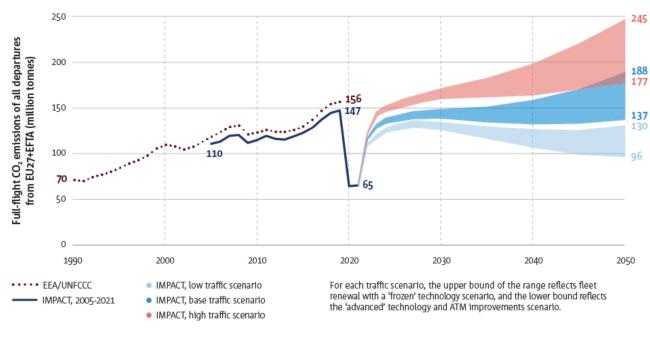
The expected role of SAF in decarbonising international civil aviation


M. Prussi

Why we need liquid fuels?

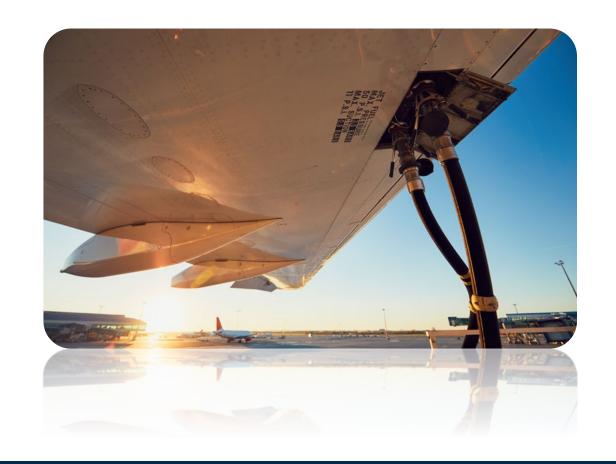
- Before COVID pandemic, international civil aviation was consuming about 160 megatons (Mt) of fuel, corresponding to approximately 2.6% of GHG emissions from fossil fuel combustion.
- The sector was growing at a significant pace: before the COVID-19 crisis, ICAO forecasted that by 2050 international aviation emissions could triple compared with 2015.


https://www.icao.int/sustainability/Documents/Covid-19/ICAO_coronavirus_Econ_Impact.pdf

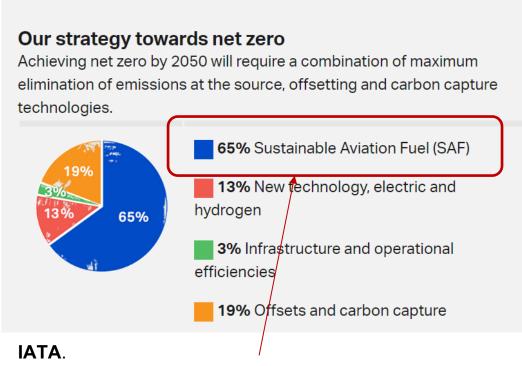
Why we need liquid fuels?

- Before COVID pandemic, international civil aviation was consuming about 160 megatons (Mt) of fuel, corresponding to approximately 2.6% of GHG emissions from fossil fuel combustion.
- The sector was growing at a significant pace: before the COVID-19 crisis, ICAO forecasted that by 2050 international aviation emissions could triple compared with 2015.

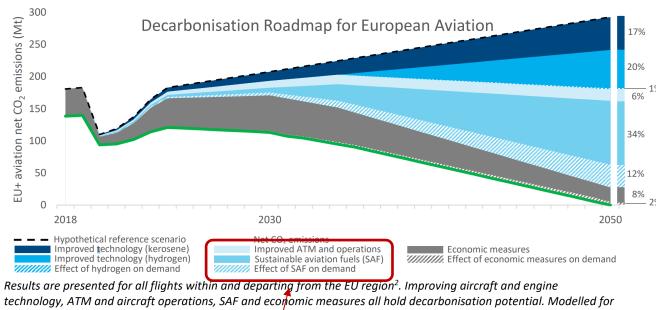
Full-flight CO₂ emissions may grow beyond 2019 levels under the base and high traffic forecast



https://www.easa.europa.eu/eco/eaer/topics/overview-aviation-sector/emissions#emissions-grew-steadily-between-2013-and-2019-and-may

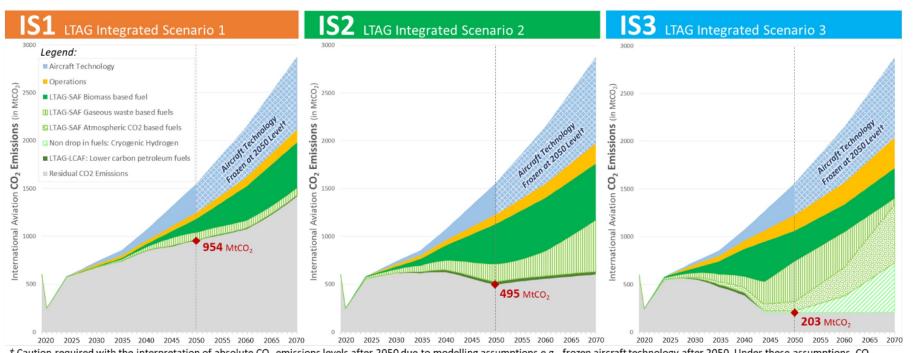


Why we need liquid fuels?


- Due to some peculiar characteristics of the aviation sector, the penetration of disruptive technologies (e.g. electrification) is expected to occur at a different pace than in other sectors (e.g. road).
- Alternative to fossil kerosene should ideally be able to supply exisiting infrastructures and engines (drop-in fuels).
- This is the reason why liquid alternative fuels could be an effective shortmedium term mean for deacarbonising international aviation.

Which is the expected role of SAF?

https://www.iata.org/en/programs/environment/flynetzero/


2030 and 2050, the impacts are linearly interpolated. The base year for this study is 2018.

Destination 2050.

https://www.destination2050.eu/wpcontent/uploads/2021/02/Destination2050 ExecutiveSummary.pdf

The ICAO LTAG feasibility study

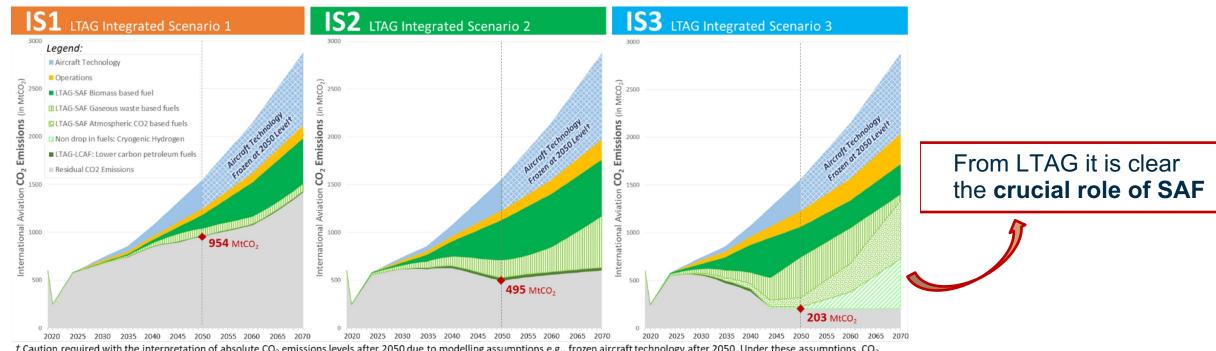

† Caution required with the interpretation of absolute CO₂ emissions levels after 2050 due to modelling assumptions e.g., frozen aircraft technology after 2050. Under these assumptions, CO₂ emissions are higher than in an alternative scenario (and modelling approach) where aircraft technology would continue to improve after 2050.

Figure 1. CO₂ emissions from international aviation associated with LTAG Integrated Scenarios

https://www.icao.int/environmental-protection/Pages/LTAG.aspx

- The 41st ICAO Assembly adopted a long-term global aspirational goal (LTAG) for international aviation of net-zero carbon emissions by 2050.
- 3 main integrated scenario with increasing aspiration and decreasing readiness and attainability

The ICAO LTAG feasibility study

† Caution required with the interpretation of absolute CO₂ emissions levels after 2050 due to modelling assumptions e.g., frozen aircraft technology after 2050. Under these assumptions, CO₂ emissions are higher than in an alternative scenario (and modelling approach) where aircraft technology would continue to improve after 2050.

Figure 1. CO₂ emissions from international aviation associated with LTAG Integrated Scenarios

https://www.icao.int/environmental-protection/Pages/LTAG.aspx

Cost per tonne of CO2 saved

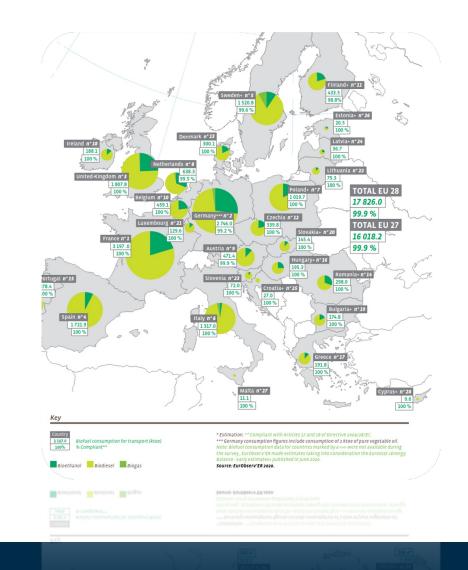
For creating the fuel scenarios, the cost per tonne of abated CO2 has been established, in LTAG.

Category	Fuel Name	Abbreviation	
LTAG- SAF	Biomass	LTAG-SAF- FTG	
	Solid/liquid		
	Gaseous waste CO2	LTAG-SAF- CO2	
	Atmospheric CO2	LTAG-SAF- DAC	
LTAG- LCAF	Lower carbon petroleum fuels	LTAG-LCAF	

Fuel Order per Scenario with Selection Criteria						
F1*	MSP [\$/L]	F2^	Marginal Abatement Cost [\$/kg CO2e _{red}]	F3	Lifecycle [gCO2e/MJ]	
LTAG- LCAF	0.52	LTAG- SAF- FTG	<1	LTAG- SAF- DAC	8-13	
LTAG- SAF- FTG	0.7-2	LTAG- LCAF	1-2	LTAG- SAF- CO2	13-16	
LTAG- SAF- CO2	~2.5	LTAG- SAF- CO2	4.3	LTAG- SAF- FTG	21-24	
LTAG- SAF- DAC	N/A	LTAG- SAF- DAC	N/A	LTAG- LCAF	80.1	

INTERNATIONAL

EUROPEAN



Emission Trading System (EU ETS)

Expected volumes and production capacity

- At European level we are discussing mandates for SAF.
- Under the proposal of a target of 5%, the volume of SAF would be around 3.0 Mtoe/y.
 - To put such figure into context, this would represent the 17.5% of the current EU27 biofuel consumption in the whole transport sector.

Sustainability criteria for SAF

Other principles are considered during the certification process:

Planning, Monitoring & Continuous Improvement

Principle 3 Greenhouse Gas Emissions

Principle 4 Human & Labour Rights

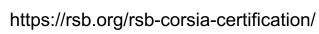
Principle 5 Rural and Social Development

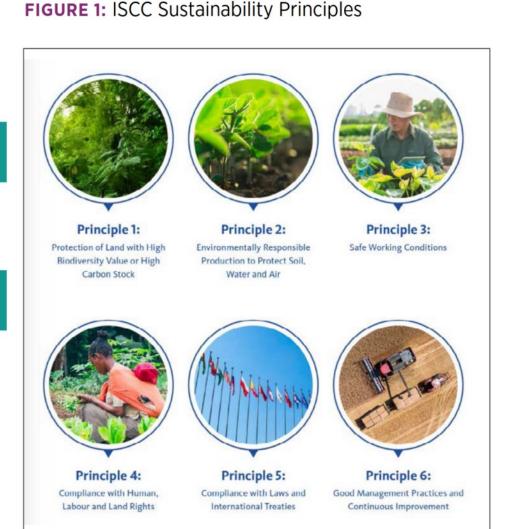
Principle 6 Local Food Security

· 🙀

Principle 12 Land Rights

Principle 7 Conservation

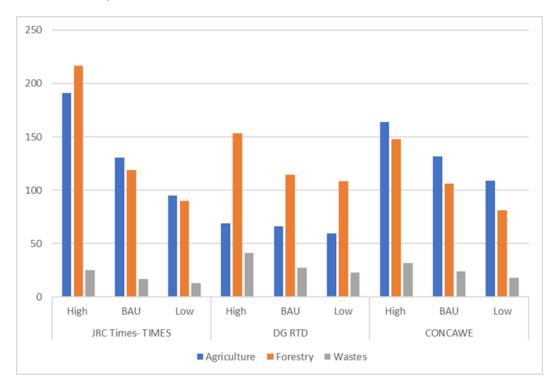

Principle 8


RSB

Principle 9 Water

Principle 10 Air Quality

Management of Waste


The feedstock availability issue

- Given the expected contribution of SAF to sector decarbonisation, it is clear the need of ensuring sustainable feedstock avaiability.
- Incresing the potential feedstock pool is a strategy to limit risks of feedstock shortage and/or potential competition with other sectors (e.g. maritime)

The feedstock availability issue

- The analysis confirmed, even under very conservative assumptions, that feedstock availability may not be the major barrier in the short term.
- Other issues such as the feedstock costs, the price volatilities, the existing logistical infrastructures, etc. are relevant aspects, contributing to the puzzle.
- Whilst feedstock is present across European regions a critical element which requires detailed analysis at the implementation, value chain level is the effectiveness of its sustainable mobilisation alongside the synergies and trade offs that may arise.

Feedstock potentials from the three selected studies for 2030.

Prussi, M., Panoutsou, C., & Chiaramonti, D. (2022). Assessment of the Feedstock Availability for Covering EU Alternative Fuels Demand. Applied Sciences, 12(2), 740.

Conclusions

- Aviation is expected to recover from COVID-19 pandemic, continuing increasing its growth, with a significant associated environmental impact.
- Aviation is expected to rely on liquid fuels in the short-medium term, especially for the long-haul flights.
- Sustainable Aviation Fuels are considered an effective tool for the sector decarbonisation strategy.
- Sustainable aviation fuels (SAFs) as defined in CORSIA can reduce life-cycle GHG emissions by over
 90%.
- A potential issue related to feedstock availability exist, even if analyses confirm that this may not be the major barrier in the short term.
- Feedstock costs, the price volatilities, competition with other sectors, etc. are other relevant aspects.
- Increasing the uptake of SAF will also require significant investments, in terms of production capacity, expecially for new technologies entering the market.

The expected role of SAF in decarbonising international civil aviation

M. Prussi

