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OLEAGINOUS MICROORGANISMS 
• Archaea, bacteria, yeast, fungi, and microalgae can produce a 

significant amount of lipids, mainly in the form of triacylglycerides
(TAGs) and fatty acids (FAs).

• The FA profile of microbial oil is similar to that of vegetable oils (i.e. 
soybean, sunflower, palm oils, …) 

• Genetic engineering is used to enhance microorganisms 
in terms of lipid accumulation, resistance to inhibitors 
and FA composition. 

• Yeasts can accumulate oil contents ranging between
58% to 72% of cell dry weight.



BASICS OF LIPIDS ACCUMULATION
• A two-phase process:
Ø Balanced growth: all nutrients available, 

cell multiplication ongoing
Ø Lipids accumulation: depletion of the 

growth-limiting nutrient (i.e. Nitrogen) à
stop of cells multiplication

• Several metabolic pathways available, with 
different theoretical yields, i.e.:
ØTAG: 25g to 35g from 100g of glucose
ØFA: similar to TAG
ØFarnesene: 25g to 29g from 100g of glucose

Ethanol yields are around 
50g from 100g of glucose



M.O. PRODUCTION PROCESS
Focusing on a lignocellulosic feedstock, 4 different steps:
1. L-C biomass pre-treatment: 
objective is to break the 
lignocellulosic matrix into 
cellouloses, hemicelluloses 
and lignin

Lipids Production



M.O. PRODUCTION PROCESS
Focusing on a lignocellulosic feedstock, 4 different steps:
2. Hydrolysis of structural 

carbohydrates to
sugars: 

objective is to produce sugar 
monomers (e.g. glucose and 
xylose) from cellulose and 
hemicellulose

Lipids Production



M.O. PRODUCTION PROCESS
Focusing on a lignocellulosic feedstock, 4 different steps:
3. Microbial production of 

lipids: 
lipid accumulation is an 
anabolic biochemical process, 
that occurs putting 
microorganisms under 
stress conditions.

Lipids Production



M.O. PRODUCTION PROCESS
Focusing on a lignocellulosic feedstock, 4 different steps:
4. Isolation and purification 

of the product: 
MO is accumulated 
intracellularly à need to 
disrupt the cell walls for 
efficient oil extraction

Lipids Production



EXAMPLES OF M.O. APPLICATIONS
• Three possible applications have been analyzed:

Ø Biofuels: biodiesel production via 
trans-esterification or hydrotreatment, 
and biojet (SAF) production (also) via 
the farnesene route

Ø Nutraceuticals: using M.O. rich in essential 
FAs (EFAs, PUFAs) à food-grade biomass
feedstock

Ø Biochemicals: several uses can be found 
in the oleochemical industry

Applications Markets Economics



M.O. CO-PRODUCTS VALORIZATION
• Needed to lower overall production costs
• If available for sale, microbial meal could have a 

price of 400 – 800 USD/ton
• Lignin is is usually reported as the most abundant 

output product in a ligno-cellulosic biorefinery
Ø Valorization strategies offer significant opportunities
Ø Separation and conversion are primary challenges

• Benzene, toluene, and xylene (BTX) and phenols
could be produced from lignin:
Ø BTX market price around 1.200 USD/t
Ø Phenols market price around 1.500 USD/t



• MO has a low TRL à still at Lab-Pilot scale

• Several interviews, invited Stakeholders represented:
• Academic research institutes, entities doing R&D on MO production process, producers of suitable 

feedstock for M.O., possible MO users

• Interviews followed a questionnaire inquiring about:
• opportunities and driver, 
• challenges and barriers 
• ideal situation for MO 11

M.O. INDUSTRIAL STAKEHOLDERS SURVEY



SURVEY RESULTS
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• Business is seen as the first development priority
• Economic sustainability of project is key
• Cost-efficiency remains to be improved 

• Technical area is following:
• Still R&D work to be done
• When close to optimization, the upscaling can be quite fast  (proximity to 

downstream users)
• Possible use of Adv. Feedstocks (as per RED II) seen as an advantage

• Policy and Regulation are immediately next:
• As a low-TRL process, incentives could be of great help
• Need for policy and regulatory framework stability
• MO could contribute to the RED II 2030 Adv. Biofuels target
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GENERAL INFO

Case Study leader: RE-CORD, supported by 
UNIFI and ENI.
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STRATEGIC Case Study:
Lignocellulosic biomass residues à
Sugars à Microbial Oil  à HVO fuels
Locations - ENI biorefineries: Porto 
Marghera (Venice, Veneto) and Gela 
(Caltanissetta, Sicily)



STRATEGIC CASE STUDY
• Target production of 100 kt/y MO, roughly equivalent to 715 kt/yr dry biomass
• The case study takes place in two different Italian regions
• Two different scenarios (complete V.C.) are evaluated for each region:

Ø Centralized: the IBC plant is placed within the bio-refinery area
§ Takes advantage of existing infrastructures

Ø Decentralized: two IBC plants are located in the region to optimize logistics.
§ Takes advantage of IBC densification process 
§ Developed a methodology for IBC plant optimal location
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IBC PLANT MODEL
• Based on data from existing NREL model
• Also based on available information from 

Crescentino ethanol plant 
• Comparable sizing
• Mass & energy flows available
• Detailed CAPEX & OPEX available
• Need to define CS-specific input costs 
Ø Biomass à from GIS biomass & logistics model
Ø Electricity
Ø Others

Crescentino (Italy)
Max capacity: 40kt/year
Feedstock: 
§ Wheat straw
§ Poplar
§ Arundo donax



IBC PLANT MODEL
• Overall process yield: 

around 14-15%
(M.O./dry biomass)

• For a 50 kt/yr M.O. 
output we have:

• Dry biomass input: 
357 kt/yr

• Lignin: 42.5 kt/yr
• Cell meal: 50 kt/yr
• Black liquor: 90 kt/yr
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THE INFER-NRG MODEL

An integrated system for the simulation
of biomass flows from field to energy:
1. Geographical Database
2. Data elaboration
3. Crop models
4. Logistics model
5. Biomass availability and costs

assessment (biomass, transport)
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4. LOGISTICS MODEL
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Supply scenarios
MONTH 1 2 3 4 5 6 7 8 9 10 11 12

Porto Marghera (north)
S1

S2

SM

G

A

Gela (south)
S1

SM

O

G

A

# Crop residues Type Moisture
Content

G Grapevine
Wood 
chips

40%

O Olive 10%

S1 Wheat, triticale
and barley Straw 

(bales)

20%

S2 Rice 30%

SM Sorghum and
maize Wood 

chips

66%

A Arundo Donax 50%
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4. LOGISTICS MODEL
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Decentralized scenario
• The IBC plants should be near to the biomass production areas (months)
• Extracted from the Corine Land Cover only the polygons (within both 

subcases) classified as industrial areas or other not-agricultural/not-
urban/not-protected areas
• Selected only the polygons within a 5km radius from either highway 

exits or national roads
• Filtered out all polygons within a buffer of 5km from urban areas (the 

social acceptancy of the intermediate plant could be considered higher).



4. LOGISTICS MODEL
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Gela (south) Porto Marghera (north)



4. LOGISTICS MODEL
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Gela (south): 6 intermediate plants Porto Marghera (north): 7 intermediate plants



4. LOGISTICS MODEL
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For each intermediate plant (and main
IBC)
• Minimum area (30kt*1 / 15kt*2)
• Safety zone (45kt* 1 / 22.5kt* 2)
Following a time/distance spiral from the
plant  

* Sum of minimum production dry matter
1 centralized scenario
2 decentralized scenario
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BIOMASS FEEDSTOCK COSTS
• Sum of three cost components:

Ø Biomass feedstock cost
Ø Collection and upstream logistics costs (from the field to the IBC plant)
Ø Downstream logistics costs (transport of MO from the IBC plant to the biorefinery)

• Evaluated for different climate and use scenario, impact on biomass availability:
Ø Impact on geographical location à transport duration à price

• Strongly influenced by lack of transport infrastructures in Southern Italy

• The downstream logistics costs impact for less than 2% on the total cost (0.54 - 1.84 
€/t)



BIOMASS FEEDSTOCK COSTS
• Veneto subcase proves more robust (i.e. transport infrastructure)
• Centralized scenarios always have higher price variability (reach further for biomass)



TECHNO-ECONOMIC ANALYSIS
• A set of two subcases with four scenarios each has been developed:

• Subcases: Porto Marghera and Gela
• Location scenario: one centralized plant or two decentralized plants 
• Lignin use scenario: all lignin is burnt for internal IBC plant energy uses VS lignin sold on the 

market for further uses.  

• The main costs and revenues components are:
Ø Plant CAPEX and OPEX
Ø Biomass feedstock costs
Ø Electricity incomes or costs (depending on lignin use – for energy or sold on the market)
Ø Lignin price on the market
Ø MO price on the market à palm oil used as a proxy (avoided cost)
Ø Biofuels incentives à Italian CIC



TECHNO-ECONOMIC ANALYSIS
• The main output parameter evaluated is Minimum Fuel Selling Price (MFSP)

Ø Cost break-even selling fuel price at which the future sales of transportation liquids and 
byproducts are equal to the present value of CAPEX and OPEX

• Best result is obtained in the Centralized, Sold Lignin scenario for the northern sub-
case
Ø Combination of lower CAPEX and not-so-high biomass costs

Subcase Centralized Decentralized
Baseline Lignin Baseline Lignin

Porto
Marghera 1269 €/t 1127 €/t 1275 €/t 1133 €/t

Gela 1363 €/t 1221 €/t 1318 €/t 1176 €/t



TECHNO-ECONOMIC ANALYSIS
Sensitivity analysis
• Variation range +/- 20%
• CAPEX and biomass cost components are the most impacting
• Followed by incentives and lignin sale price



GHG EMISSION EVALUATION
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• MO production process confronted with:
Ø Fatty acids from palm oil
Ø Fatty acids from soybean oil
Ø Fatty acids from coconut oil

• Lignin sale on market is reported to lead to higher specific (kgCO2eq/kgMO) GHG emissions
Ø Due to related reduction in renewable electricity production and need to compensate with grid electricity
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CONCLUSIONS

• Biomass feedstock price evaluated at 86.9 €/t to 104.6 €/t 
Ø Lower price in northern Italy
Ø High impact of transport costs

• MFSP ranging between 1127 €/t (Centralized, Sold Lignin, North) and 1363 €/t 
(Centralized, Baseline, South)

• Higher lignin sale price improve financial viability
Ø Higher purity grade required à higher CAPEX, R&D

• GHG emissions reduction from around 3 to 10 times when compared with fatty
acids production from palm oil feedstock.
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BIOMASS FEEDSTOCK COSTS
• Impact from transport infrastructure

Total Costs

Upstream Logistics Costs



TECHNO-ECONOMIC ANALYSIS
• Summary of the values of the parameters involved in the techno-economic analysis:

Centralized Decentralized
Base Lignin Base Lignin

Biomass price (dry) 91.4 (PM) / 104.6 (G) €/t1 86.9 (PM) / 92.9 (G) €/t1
Electricity price 50 €/MWh (sold) – 108 €/MWh (purchased)
Lignin price 300 €/t
Incentives value 375 €/10 Gcal (646 €/t MO or 779 €/t HVO )
Palm oil price 700 €/t
CAPEX (single plant) 335,151,077 € 327,972,466 € 174,982,678 € 171,328,112 €
OPEX (single plant) 52,320,075 € 58,374,512 € 24,944,245 € 27,971,463 €

Depreciation yr 10
Lifespan yr 30
Discount Rate % 5.0
Tax Rate % 30



TECHNO-ECONOMIC ANALYSIS
Fuel Selling Price VS Lignin Market Price
• Red dashed line à MFSP with lignin @ 300 €/t

• Lignin price greatly affects financial viability
Ø Higher CAPEX required to unlock higher lignin value (purity)
Ø More R&D as well

Centralized, Lignin Sold, Northern Scenario


