

Application of biochar and compost on Camelina crops in semi-arid land: effects on feedstock production and soil health

Prepared by Tommaso Barsali Francesca Tozzi

23th February 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 789562.

Italian field trials in Montepaldi and Terontola

Bio

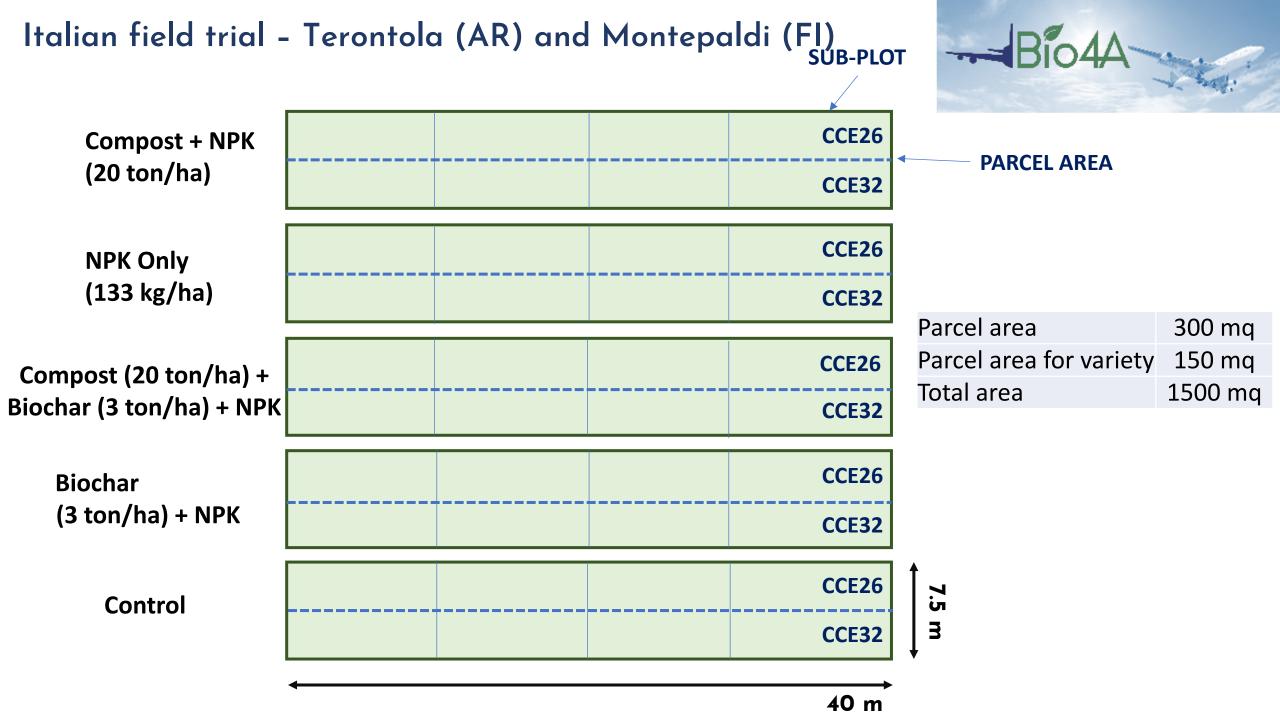
Italian field trials

Italian field trials

RESEARCH GOAL

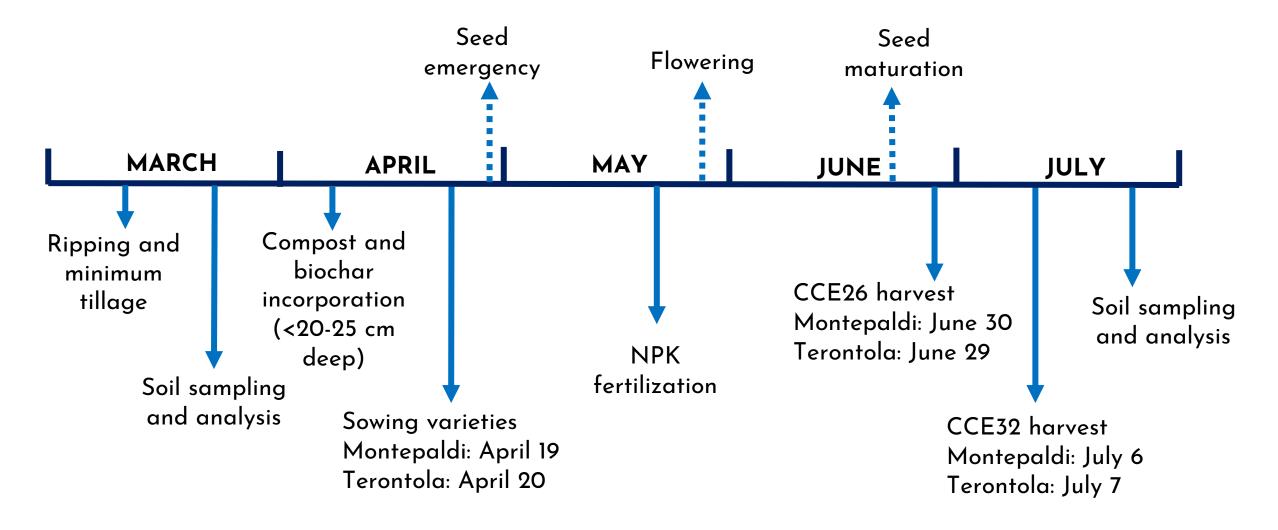
Evaluation of the effect of biochar alone or mixed with compost on:

- Camelina seed yield, biomass and oil yield and quality
- Soil chemical and physical properties
- Agronomic Use Efficiency of nitrogen


AGRONOMIC AND ENVIRONMENTAL CONDITIONS

- Field experiment
- 2 locations: Terontola (Arezzo) and Montepaldi (Florence)
- 1500 m2 experiment
- **Biochar** from poplar (550°C, slow pirolysis)
- 2 Camelina varieties: short cycle (CCE26) and medium cycle (CCE32)

TREATMENTS


- **CONTROL**: no fertilization or organic amendement
- NPK FERTILIZATION (eq. to 133 kg/ha)
- COMPOST (eq. to 20 ton/ha) + NPK
- **BIOCHAR** (eq. to 3 ton/ha) + NPK
- COMPOST (eq. to 20 ton/ha) + BIOCHAR (eq. to 3 ton/ha) + NPK

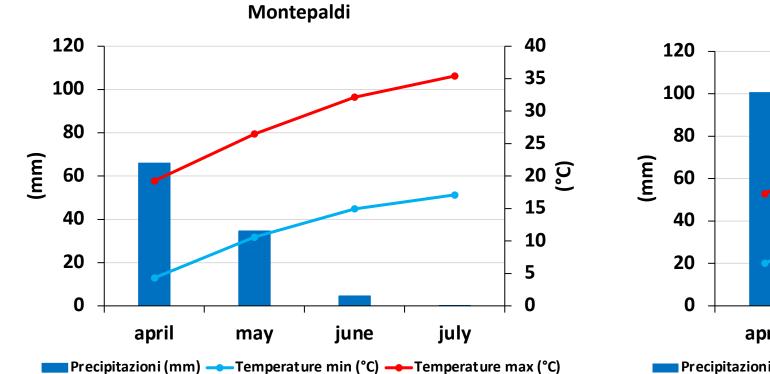
Italian field trial – Agronomic practices and main operations

Italian field trial - Parameters and analysis

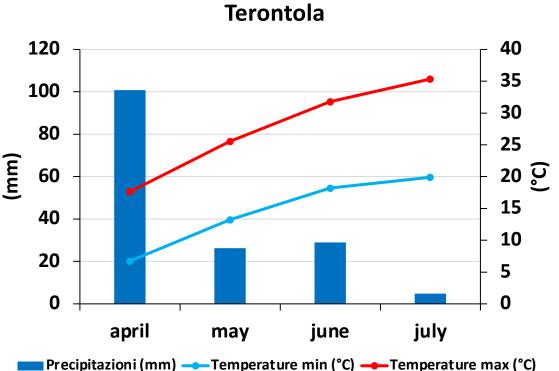
 Bio4A	
	i marti

<u>ANALYSIS</u>	PARAMETERS
Camelina plant	Biomass
	Yield
Camelina oil	yield + some quality parameters
Biochar	Full characterization
Compost	Full characterization
Soil	Chemical analysis (Before cultivation and at the end of the plant cycle)
	pH, EC, CEC
	Water holding capacity, bulk density
	Total carbon
	Organic carbon
	P available, P organic, P total
	N forms
	Macro and micro-nutrient available and total concentration

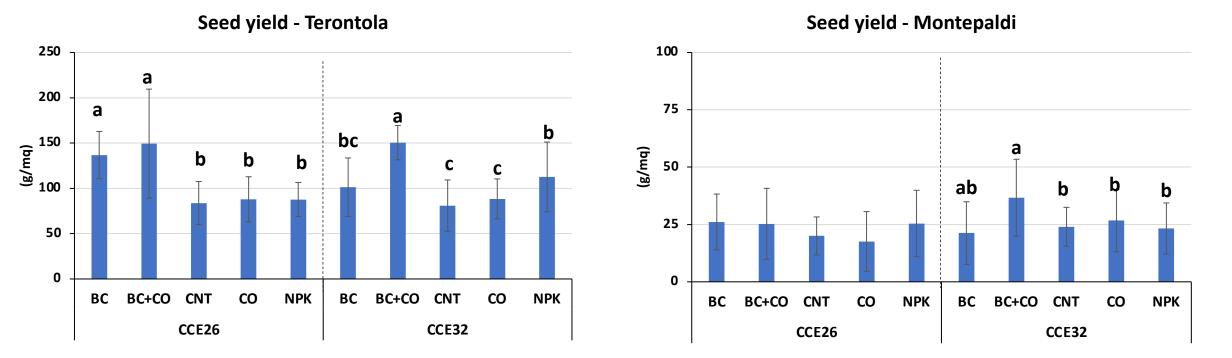
Italian field trial – Terontola



Italian field trial



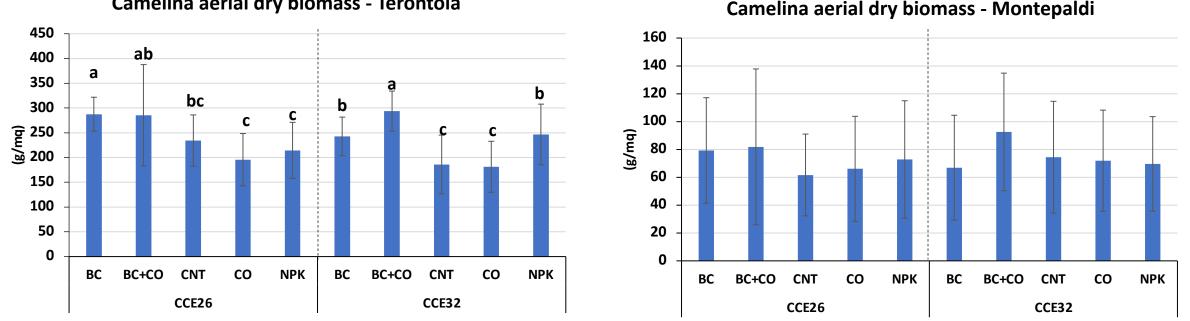
CLIMATIC PARAMETERS from seeding to harvest


		Precipitations (mm)			
		MONTEPALDI	TERONTOLA		
april		66.0	101		
may		34.6	26		
june		4.6	29		
july		0.2	5		
	tot	105.4	160.8		

https://www.sir.toscana.it/consistenza-rete

Italian field trial - CAMELINA SEED YIELD

Fisher's test p<0.001


- 12 samples harvested manually for each variety using circular frames
- Camelina plants performed better in Terontola location => probably better agro-environmental conditi
- Statistical differences were detected except for CCE26 in Montepaldi
- The highest yield were collected with biochar + compost

Italian field trial - CAMELINA DRY BIOMASS AT HARVEST

Fisher's test p<0.001

Camelina aerial dry biomass - Terontola

- Aerial dry biomass includes all plant organs with the exception of seed and root
- Statistical differences were dectected only for Terontola location (high variability in Montepaldi)
- CCE26 highest biomass with biochar; CCE32 highest biomass with biochar + compost

Bio

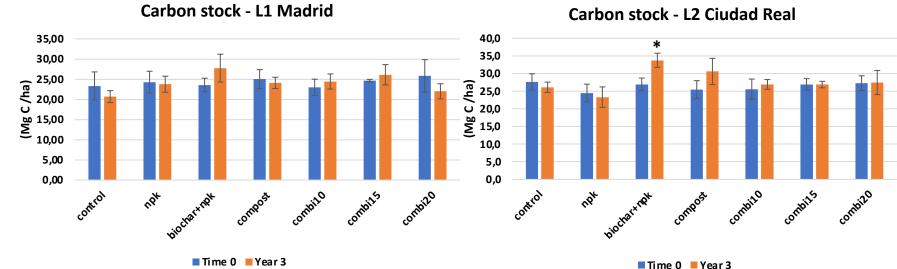
REDII Esca factor calculation - Carbon Stock

Economic operators seeking to claim emission savings from soil carbon accumulation via improved agricultural management (\mathbf{e}_{sca}) in terms of g CO₂eq/MJ should use the following formula to calculate their actual values:

$$e_{sca} = (CS_A - CS_R) \times 3,664 \times 10^6 \times \frac{1}{n} \times \frac{1}{p} - e_f$$

ANNEX V

METHODOLOGY FOR DETERMINING THE EMISSION SAVINGS FROM SOIL CARBON ACCUMULATION VIA IMPROVED AGRICULTURAL MANAGEMENT


Where:

- CS_R is the mass of soil carbon stock per unit area associated with the reference crop management practice in Mg of C per ha.
- CS_A is the mass of soil estimated carbon stock per unit area associated with the actual crop management practices after at least 10 years of application in Mg of C per ha.
- 3,664 is the quotient obtained by dividing the molecular weight of CO_2 (44,010 g/mol) by the molecular weight of carbon (12,011 g/mol) in g CO_{2eq}/g C.
- *n* is the period (in years) of the cultivation of the crop considered.
- *P* is the productivity of the crop (measured as MJ biofuel or bioliquid energy per ha per year).
- ef emissions from the increased fertilisers or herbicide use

REDII Esca factor - Carbon Stock calculation

$$CS_R = \frac{\left(C_{ORG} \, x \, BD \, x \, T \, x(1-F)\right)}{100}$$

$$CS_{Adjusted} = \left(\frac{BD_0}{BD_N}\right) x CS_n$$

Where:

 CS_R is the carbon stock at the initial measurement expressed as Mg of C/ha;

 C_{org} is the organic carbon content (g C/ha);

BD is the soil bulk density (kg/m³);

T is the thickness (depth, m);

F is the volume of coarse mineral fraction in % by mass ($m^3/m^3 \times 100$).

REDII Esca factor calculation Carbon Stock

LOCATION 1						
Madrid	Stock (Mg of C /ha)		SD			
Treatment	Time 0	Year 3	Time 0	Year 3	Delta	C stock increment (%)
control	23.33	20.69	3.5	1.5	-2.6	-11.3
npk	24.3	23.8	2.7	2.0	-0.5	-2.2
biochar+npk	23.6	27.8	1.7	3.5	4.2	17.8
compost	25.0	24.1	2.4	1.4	-0.9	-3.7
combi10	23.0	24.4	2.0	1.9	1.4	6.3
combi15	24.7	26.1	0.3	2.5	1.4	5.8
combi20	25.8	22.0	4.0	1.9	-3.8	-14.8
LOCATION 2						
Ciudad Real	Stock (Mg of C	Stock (Mg of C /ha)		SD		
Treatment	Time 0	Year 3	Time 0	Year 3	Delta	C stock increment (%)
control	27.6	26.1	2.3	1.5	-1.5	-5.4
npk	24.5	23.3	2.5	2.9	-1.2	-4.8
biochar+npk	26.9	33.7	1.8	2.0	6.8	25.3
compost	25.4	30.6	2.6	3.7	5.2	20.3
combi10	25.6	26.9	2.9	1.4	1.4	5.3
combi15	26.9	26.9	1.6	0.9	0.0	-0.2
combi20	27.3	27.4	2.1	3.4	0.2	0.7

----Bio4A